Templates & layouts

PrestaShop template file are based on the Smarty 3 template engine.

All template files must be stored in the theme’s t enpl at es/ subfolder. For instance, the default
theme has its template files in the following folder: / t hemes/ cl assi c/ t enpl at es.

Directory structure

Templates are then split between various subfolders.

Folder Description
_partials | Code shared across the whole site like, header, footer or notifications.
catalog Product page, product/brand/supplier listing, search results and such.
checkout ' Cart, delivery options, payment options, order confirmations and such.
cms All the static content: contact, sitemap, CMS pages and such.
customer = Everything about the customer’s account and its data.
errors All the error templates: not found, server error, forbidden and such.

layouts The theme layouts: 1, 2 or more columns, full width, everything is possible.

Template files should be written so that a single .tpl can generate a whole HTML page — unless they
are inside a _parti al s folder or subfolder (see our coding standard, linked from the Prologue chapter
of this documentation).

Templates

We make a clear difference between templates and layout:

* Atemplate extends a layout.
® The layout holds the global organization of the page.
® A template is specific to a feature: the product page for example.

There are many templates is a PrestaShop theme. The main ones includes:

index.tpl for the home page.

catalog/product.tpl for the product page.
catalog/listing/product-list.tpl for any product list page.
checkout/cart.tpl for the detailed cart.
checkout/checkout.tpl for the checkout process.

Specific templates

If you're working on a big store with many languages, you may need to change the layout of the page
depending on the language.

For example, you may want a different product page for American customers and Japanese ones. In
this case you have to create new pr oduct . t pl template and place it in the right folder.

When searching for a template, PrestaShop will check many location to determine which file should be
used. It makes it easy to have a different template for a given locale or a specific entity id.

With the Product page, the core will check the following locations (in order) and return the first template
found:

http://www.smarty.net/v3_overview

® Example with a product with ID = 3 and locale = en-US

a. en- US/ cat al og/ product - 3. t pl

cat al og/ product - 3.t pl

en/ US/ cat al og/ | i sting/product.tpl
catal og/listing/product.tpl

aeooT

® Another example with category template for the category with ID = 9 and locale = en-US.

a. en-US/ catal og/listing/category-9.tpl
catal og/listing/category-9.tpl

en/ US/ cat al og/listing/category.tpl
catal og/listing/category.tpl

en-US/ catal og/listing/product-list.tpl
f. catal og/listing/product-list.tpl

PanoT

This feature is mostly made for developers working on a custom template for a customer.

Layouts

The layout is the organization of the page, the way in which the parts of your design are arranged. The
typical example is the sidebar: is there a sidebar on your category page or is your product listing is
taking the whole space?

With PrestaShop 1.7, users are given the ability to change the layout of each page independently. As a
template developer, it is your role to ensure that your theme is compatible.

Design / Theme & Logo

Dashboard 0 - ﬁ‘ 9
Theme & Logo > Theme (el
—_ Add new theme Export current theme Recommended Modules and Services Help
Orders
Catalog % CHOOSE LAYOUTS
Customers.
Page Description Layout
Customer Service
404 error This page cannot be found Full Width - No side columns, ideal for distraction-free pages such as product pages.
Stats
Best sales Our best sales Two Columns, small left column - Two calumns with a small left column
IMPROVE
Contact us Use our form to contact us Two Columns, small left column - Two columns with a small left column
Modules
index Shop powered by PrestaShop + Full Widith - No side columns, ideal for distraction-free pages such as product pages.
Design Three Columns - One large central column and 2 side columns. |3
Manufacturers Manufacturers list Two Columns, small left column - Two columns with a smallleft column
Theme & Logo Twa Columns, small right column - Twa columns with a small right column
Theme Catalog New products Our new products Two Columns, small left column - Two columns with a small left column
Pages Forgot your password Enter the e-mail address you use to sign in to recaive an a-mail with a new password Full Width - No side columns, ideal for distraction-free pages such as product pages.
Prices drop Our special products Two Columns, small left column - Two columns with a small left column
Sitemap Lost ? Find what your ara looking for Full Width - No side columns, ideal for distraction-frea pages such as product pages.
Link Widget
Suppliers Suppliers list Full Width - No side columns, ideal for distraction-free pages such as product pages.

Shipping

What's in a layout file

The layout is the very top level of the template inheritance tree. Basically, it holds the opening and
closing <ht m > tags.

Typical layout files look like the following snippet. This one is a full file.

<! doctype htm >
<htnm | ang="{$l anguage.i so_code}">

<head>
{bl ock nane='head'}
{include file="_partials/head.tpl"'}
{/ bl ock}
</ head>

<body id="{$page. page_nane}" cl ass="{$page. body_cl asses]| cl assnanmes}" >
{hook h='di spl ayAfter BodyQpeni ngTag' }
<mai n>

<header id="header">
{bl ock nane=' header'}
{include file='_partial s/header.tpl"'}
{/ bl ock}
</ header >

<section id="wapper">
<div class="contai ner">

{bl ock name=' breadcrunb'}
{include file='_partials/breadcrunb.tpl'}
{/ bl ock}

{bl ock name="Ileft_col um"}
<div id="Ieft-colum">

{if $page. page_name == 'product'}
{hook h='di spl ayLeft Col umPr oduct '}
{el se}
{hook h="di spl ayLeft Col um"}
{/if}
</ div>
{/ bl ock}

{bl ock nane="content_w apper"}
<di v id="content-w apper">
{bl ock nanme="content"}
<p>Hel lo world! This is HTM.5 Boil erplate. </ p>
{/ bl ock}
</ div>
{/ bl ock}

</ di v>
</ section>

<footer id="footer">
{bl ock nanme="footer"}
{include file="_partials/footer.tpl"}
{/ bl ock}
</ footer>
</ mai n>
{hook h='di spl ayBef or eBodyd osi ngTag' }
{bl ock nane='javascript_botton}
{include file="_partials/javascript.tpl" javascript=$javascript.bottont
{/ bl ock}
</ body>

</ htnm >

From there, each part of the theme will do its job and replace content inside these bricks, keeping the
same organization.

Remember to define as many blocks as possible.

	Templates & layouts

