
Diving into PrestaShop Core development

Table of contents

Diving into PrestaShop Core development
Accessing the database

The database structure
The ObjectModel class
The DBQuery class

The Dispatcher
Controllers

The FrontController class
Execution order of the controller's functions
Existing controllers
Overriding a controller

Views
Cookies

Data stored in a visitor/client's cookie
Data stored in an employee/administrator's cookie

Hooks
Using hooks
Creating your own hook

Diving into PrestaShop Core development

Accessing the database

The database structure

PrestaShop's database tables start with the prefix. Note that this can be customized during ps_
installation

All table names are in lowercase, and words are separated with an underscore character (" ")._

When a table establishes the links between two entities, the names of both entities are mentioned in
the table's name. For instance, links products to their category.ps_category_product

A few details to note:

Use the field to store the language associated with a record.id_lang
Use the field to store the store associated with a record.id_shop
Tables which contain translations must end with the suffix. For instance, contains all the translations for the _lang ps_product_lang ps_prod

 table.uct
Tables which contain the records linking to a specific shop must end with the suffix. For instance, contains the _shop ps_category_shop
position of each category depending on the store.

The ObjectModel class

This is the main object of PrestaShop's object model. It can be overridden with precaution.

It is an Active Record kind of class (see:). http://en.wikipedia.org/wiki/Active_record_pattern
PrestaShop's database table attributes or view attributes are encapsulated in the class. Therefore, the
class is tied to a database record. After the object has been instantiated, a new record is added to the
database. Each object retrieves its data from the database; when an object is updated, the record to
which it is tied is updated as well. The class implements accessors for each attribute.

Defining the model

You must use the static variable in order to define the model.$definition

http://en.wikipedia.org/wiki/Active_record_pattern

For instance:

/**
* Example from the CMS model (CMSCore)
*/
public static $definition = array(
 'table' => 'cms',
 'primary' => 'id_cms',
 'multilang' => true,
 'fields' => array(
 'id_cms_category' => array('type' => self::TYPE_INT, 'validate' => 'isUnsignedInt'),
 'position' => array('type' => self::TYPE_INT),
 'active' => array('type' => self::TYPE_BOOL),
 // Lang fields
 'meta_description' =>
 array('type' => self::TYPE_STRING, 'lang' => true, 'validate' => 'isGenericName', 'size' => 255),
 'meta_keywords' =>
 array('type' => self::TYPE_STRING, 'lang' => true, 'validate' => 'isGenericName', 'size' => 255),
 'meta_title' =>
 array('type' => self::TYPE_STRING, 'lang' => true, 'validate' => 'isGenericName', 'required' => true,
'size' => 128),
 'link_rewrite' =>
 array('type' => self::TYPE_STRING, 'lang' => true, 'validate' => 'isLinkRewrite', 'required' => true,
'size' => 128),
 'content' =>
 array('type' => self::TYPE_HTML, 'lang' => true, 'validate' => 'isString', 'size' => 3999999999999),
),
);

A model for many stores and/or languages

In order to have an object in many languages:

'multilang' => true

In order to have an object depending on the current store

'multishop' => true

In order to have an object which depends on the current store, and in many languages:

'multilang_shop' => true

The main methods

Any overriding of the ObjectModel methods is bound to influence how all the other classes and
methods act. Use with care.

Method name and parameters Description

__construct($id = NULL, $id_lang = NULL) Build object.

add($autodate = true, $nullValues = false) Save current object to database (add or update).

associateTo(integer|array $id_shops) Associate an item to its context.

delete() Delete current object from database.

deleteImage(mixed $force_delete = false) Delete images associated with the object.

deleteSelection($selection) Delete several objects from database.

getFields() Prepare fields for ObjectModel class (add, update).

getValidationRules($className = _CLASS_) Return object validation rules (field validity).

save($nullValues = false, $autodate = true) Save current object to database (add or update).

toggleStatus() Toggle object's status in database.

update($nullValues = false) Update current object to database.

validateFields($die = true, $errorReturn = false) Check for field validity before database interaction.

The DBQuery class

The DBQuery class is a query builder which helps you create SQL queries. For instance:

$sql = new DbQuery();
$sql->select('*');
$sql->from('cms', 'c');
$sql->innerJoin('cms_lang', 'l', 'c.id_cms = l.id_cms AND l.id_lang = '.(int)$id_lang);
$sql->where('c.active = 1');
$sql->orderBy('position');
return Db::getInstance()->executeS($sql);

Here are some of the methods from this class:

Method name and parameters Description

__toString() Generate and get the query.

build() Generate and get the query (return a string).

from(string $table, mixed $alias = null) Set table for FROM clause.

groupBy(string $fields) Add a GROUP BY restriction.

having(string $restriction) Add a restriction in the HAVING clause (each restriction will be
separated by an AND statement).

innerJoin(string $table, string $alias = null,
string $on = null)

Add INNER JOIN clause, E.g. $this->innerJoin('product p ON ...').

join(string $join) Add JOIN clause, E.g. $this->join('RIGHT JOIN'.
_DB_PREFIX_.'product p ON ...');.

leftJoin(string $table, string $alias = null,
string $on = null)

Add LEFT JOIN clause.

leftOuterJoin(string $table, string $alias =
null, string $on = null)

Add LEFT OUTER JOIN clause.

limit(string $limit, mixed $offset = 0) Limit results in query.

naturalJoin(string $table, string $alias = null) Add NATURAL JOIN clause.

orderBy(string $fields) Add an ORDER B restriction.

select(string $fields) Add fields in query selection.

where(string $restriction) Add a restriction in WHERE clause (each restriction will be separated
by an AND statement).

The Dispatcher

The Dispatcher is one of the main technical features of v1.5. It handles URL redirections. Instead of
using multiple files in the root folder like , or , only one file product.php order.php category.php
is used: . From now on, internal URL will look like , index.php index.php?controller=category

, etc.index.php?controller=product

Additionally, the Dispatcher is built to support URL rewriting. Therefore, when URL-rewriting is off,
PrestaShop will use the following URL form:

http://myprestashop.com/index.php?controller=category&id_category=3&id_lang=1
http://myprestashop.com/index.php?controller=product&id_product=1&id_lang=2

...and when URL-rewriting is on (or "Friendly URLs"), PrestaShop's Dispatcher will correctly support
this URL form:

http://myprestashop.com/en/3-music-ipods
http://myprestashop.com/fr/1-ipod-nano.html

There are several advantages for this system:

It is easier to add a controller.
You can use custom routes to change your friendly URLs (which is really better for SEO!)
There is only one single entry point into the software, which improves PrestaShop's reliability, and facilitates future developments.

The Dispatcher makes use of three new 1.5 abstract classes: , and Controller FrontController A
 (the last two inheriting from the first one).dminController

New routes can be created by overriding the method.loadRoutes()
The store administrator can change a controller's URL using the "SEO & URLs" page in the back-
office's "Preferences" menu.

Controllers

In the MVC architecture, a Controller manages the synchronization events between the View and the
Model, and keeps them up to date. It receives all the user events and triggers the actions to perform.
If an action needs data to be changed, the Controller will "ask" the Model to change the data, and in
turn the Model will notify the View that the data has been changed, so that the View can update itself.

All of PrestaShop's controllers actually override the class through another inheriting Controller
class, such as , , , AdminController ModuleAdminController FrontController ModuleFront

, etc.Controller

The FrontController class

Some of the class' properties:

Property Description

$template Template name for page content.

$css_files Array list of CSS files.

$js_files Array list of JavaScript files.

$errors Array of errors that have occurred.

1.
2.
3.

4.
5.
6.
7.
8.

$guestAllowed Whether a customer who has signed out can access the page.

$initialized Whether the function has been called.init()

$iso The ISO code of the currently selected language.

$n The number of items per page.

$orderBy The field used to sort.

$orderWay Whether to sort is ascending or descending ("ASC" or "DESC").

$p The current page number.

$ajax If the ajax parameter is detected in request, set this flag to true.

Execution order of the controller's functions

__contruct(): Sets all the controller's member variables.
init(): Initializes the controller.
setMedia() or : Adds all JavaScript and CSS specifics to the page so that they can be combined, compressed and setMobileMedia()
cached (see PrestaShop's CCC tool, in the back-office "Performance" page, under the "Advanced preferences" menu).
postProcess(): Handles .ajaxProcess
initHeader(): Called before .initContent()
initContent(): Initializes the content.
initFooter(): Called after .initContent()
display() or : Displays the content.displayAjax()

Existing controllers

Controller's filename Description

AddressController.php Used by address.php to edit a customer's address.

AddressesController.php Used by addresses.php to get customer's addresses.

AuthController.php Used by authentication.php for customer login.

BestSalesController.php Used by best-sales.php to get best-sellers.

CartController.php Used by cart.php to manage the customer's cart.

CategoryController Used by category.php to get product categories.

CMSController.php Used by cms.php to get a CMS page.

CompareController.php Used by products-comparison.php to compare products.

ContactController.php Used by contact-form.php to send messages.

DiscountController.php Used by discount.php to get a customer's vouchers.

GuestTrackingController.php Used by guest-tracking.php to manage guest orders.

HistoryController.php Used by history.php to get a customer's orders.

IdentityController.php Used by identity.php for customer's personal info.

IndexController.php Used by index.php to display the homepage.

ManufacturerController.php Used by manufacturer.php to get manufacturers.

MyAccountController.php Used by my-account.php to manage customer account.

NewProductsController.php Used by new-products.php to get new products.

OrderConfirmationController.php Used by order-confirmation.php for order confirmation.

OrderController.php Used by order.php to manage the five-step checkout.

OrderDetailController.php Used by order-detail.php to get a customer order.

OrderFollowController.php Used by order-follow.php to get a customer's returns.

OrderOpcController.php Used by order-opc.php to manage one-page checkout.

OrderReturnController.php Used by order-return.php to get a merchandise return.

OrderSlipController.php Used by order-slip.php to get a customer's credit slips.

PageNotFoundController.php Used by 404.php to manage the "Page not found" page.

ParentOrderController.php Manages shared order code.

PasswordController.php Used by password.php to reset a lost password.

PricesDropController.php Used by prices-drop.php to get discounted products.

ProductController.php Used by product.php to get a product.

SearchController.php Used by search.php to get search results.

SitemapController.php Used by sitemap.php to get the sitemap.

StoresController.php Used by stores.php to get store information.

SupplierController.php Used by supplier.php to get suppliers.

Overriding a controller

Thanks to object inheritance, you can change a controller's behaviors, or add new ones.

PrestaShop's controllers are all stored in the folder, and use the "Core" suffix./controllers

For instance, when working with the Category controller:

File: /controllers/CategoryController.php
Class: CategoryControllerCore

In order to override a controller, you must first create a new class without the "Core" suffix, and place
its file in the folder./override/controllers

For instance, when overriding the Category controller:

File: /override/controllers/front/CategoryController.php
Class: CategoryController

Views

PrestaShop uses the Smarty template engine to generate its views: http://www.smarty.net/

The views are stored in files..tpl

A view name is generally the same as the name for the code using it. For instance, uses 404.php 404
..tpl

Cookies

PrestaShop uses encrypted cookies to store all the session information, for visitors/clients as well as
for employees/administrators.

The Cookie class () is used to read and write cookies./classes/Cookie.php

View overriding

As there is no inheritance, there is no way to override a view.

In order to change a view, you must rewrite the template file, and place it in your theme's folder.

http://www.smarty.net/

In order to access the cookies from within PrestaShop code, you can use this:

$this->context->cookie;

All the information stored within a cookie is available using this code:

$this->context->cookie->variable;

If you need to access the PrestaShop cookie from non-PrestaShop code, you can use this code:

include_once('path_to_prestashop/config/config.inc.php');
include_once('path_to_prestashop/config/settings.inc.php');
include_once('path_to_prestashop/classes/Cookie.php');
$cookie = new Cookie('ps'); // Use "psAdmin" to read an employee's cookie.

Data stored in a visitor/client's cookie

Token Description

date_add The date and time the cookie was created (in YYYY-MM-DD HH:MM:SS format).

id_lang The ID of the selected language.

id_currency The ID of the selected currency.

last_visited_category The ID of the last visited category of product listings.

ajax_blockcart_display Whether the cart block is "expanded" or "collapsed".

viewed The IDs of recently viewed products as a comma-separated list.

id_wishlist The ID of the current wishlist displayed in the wishlist block.

checkedTOS Whether the "Terms of service" checkbox has been ticked (1 if it has and 0 if it hasn't)

id_guest The guest ID of the visitor when not logged in.

id_connections The connection ID of the visitor's current session.

id_customer The customer ID of the visitor when logged in.

customer_lastname The last name of the customer.

customer_firstname The first name of the customer.

logged Whether the customer is logged in.

passwd The MD5 hash of the in and the password the customer used to log in._COOKIE_KEY_ config/settings.inc.php

email The email address that the customer used to log in.

id_cart The ID of the current cart displayed in the cart block.

checksum The Blowfish checksum used to determine whether the cookie has been modified by a third party.
The customer will be logged out and the cookie deleted if the checksum doesn't match.

Data stored in an employee/administrator's cookie

Token Description

date_add The date and time the cookie was created (in YYYY-MM-DD HH:MM:SS format).

id_lang The ID of the selected language.

id_employee The ID of the employee.

lastname The last name of the employee.

firstname The first name of the employee.

email The email address the employee used to log in.

profile The ID of the profile that determines which tabs the employee can access.

passwd The MD5 hash of the in and the password the employee used to log in._COOKIE_KEY_ config/settings.inc.php

checksum The Blowfish checksum used to determine whether the cookie has been modified by a third party.
If the checksum doesn't match, the customer will be logged out and the cookie is deleted .

Hooks

Hooks are a way to associate your code to some specific PrestaShop events.

Most of the time, they are used to insert content in a page.

For instance, the PrestaShop default theme's home page has the following hooks:

Hook name Description

displayHeader Displays the content in the page's header area.

displayTop Displays the content in the page's top area.

displayLeftColumn Displays the content in the page's left column.

displayHome Displays the content in the page's central area.

displayRightColumn Displays the content in the page's right column.

displayFooter Displays the content in the page's footer area.

Hooks can also be used to perform specific actions under certain circumstances (i.e. sending an e-mail
to the client).

You can get a full list of the hooks available in PrestaShop 1.5 in the "Hooks in PrestaShop 1.5"
chapter of the Developer Guide.

Using hooks

...in a controller

It is easy to call a hook from within a controller: you simply have to use its name with the hookExec()
method: Module::hookExec('NameOfHook');

For instance:

$this->context->smarty->assign('HOOK_LEFT_COLUMN', Module::hookExec('displayLeftColumn'));

...in a module

In order to attach your code to a hook, you must create a non-static public method, starting with the "ho
" keyword followed by either " " or " ", and the name of the hook you want to use.ok display action

This method receives one (and only one) argument: an array of the contextual information sent to the
hook.

public function hookDisplayNameOfHook($params)
{
 // Your code.
}

In order for a module to respond to a hook call, the hook must be registered within PrestaShop. Hook
registration is done using the method. Registration is usually done during the registerHook()
module's installation.

public function install()
{
 return parent::install() && $this->registerHook('NameOfHook');
}

...in a theme

It is easy to call a hook from within a template file (): you simply have to use its name with the .tpl hook
function. You can add the name of a module that you want the hook execute.

For instance:

{hook h='displayLeftColumn' mod='blockcart'}

Creating your own hook

You can create new PrestaShop hooks by adding a new record in the table in your MySQL ps_hook
database. You could do it the hard way:

INSERT INTO `ps_hook` (`name`, `title`, `description`) VALUES ('nameOfHook', 'The name of your hook', 'This is
a custom hook!');

...but PrestaShop enables you to do it the easy way:

$this->registerHook('NameOfHook');

If the hook "NameOfHook" doesn't exist, PrestaShop will create it for you. No need to do the SQL
query anymore.

	Diving into PrestaShop Core development

