
1.
2.
3.

4.
5.
6.
7.
8.

Controllers within PrestaShop
Controllers within PrestaShop

In an MVC architecture, a Controller manages the synchronization events between the View and the
Model, and keeps them up to date. It receives all the user events and triggers the actions to perform.

If an action needs data to be changed, the Controller will “ask” the Model to change the data, and in
turn the Model will notify the View that the data has been changed, so that the View can update itself.

All of PrestaShop’s controllers actually override the Controller class through another inheriting class:

AdminController,
ModuleAdminController,
FrontController,
ModuleFrontController.

They can be found in the /classes/controller folder.

The FrontController class

Here are some of the class’ properties:

Property Description

$template Template name for page content.

$css_files Array list of CSS files.

$js_files Array list of JavaScript files.

$errors Array of errors that have occurred.

$guestAllow ed Whether a customer who has signed out can access the page.

$initialize d Whether the function has been called.init()

$iso The ISO code of the currently selected language.

$n The number of items per page.

$orderBy The field used to sort.

$orderWay Whether to sort is ascending or descending (“ASC” or “DESC”).

$p The current page number.

$ajax If the ajax parameter is detected in request, set this flag to true.

Execution order of the controller’s functions

__contruct(): Sets all the controller’s member variables.
init(): Initializes the controller.
setMedia() or : Adds all JavaScript and CSS specifics to the page so that they can be combined, compressed and setMobileMedia()
cached (see PrestaShop’s CCC tool, in the back office “Performance” page, under # the “Advanced preferences” menu).
postProcess(): Handles .ajaxProcess
initHeader(): Called before .initContent()
initContent(): Initializes the content.
initFooter(): Called after .initContent()
display() or : Displays the content.displayAjax()

Existing front office controllers

Here are the default controllers, and the theme files that use them.

Controller’s filename Description

AddressController.php Used by address.php to edit a customer’s address.

AddressesController.php Used by addresses.php to get customer’s addresses.

AttachmentController.php

AuthController.php Used by authentication.php for customer login.

BestSalesController.php Used by best-sales.php to get best-sellers.

CartController.php Used by cart.php to manage the customer’s cart.

CategoryController Used by category.php to get product categories.

ChangeCurrencyController.php

CmsController.php Used by cms.php to get a CMS page.

CompareController.php Used by products-comparison.php to compare products.

ContactController.php Used by contact-form.php to send messages.

DiscountController.php Used by discount.php to get a customer’s vouchers.

GetFileController.php

GuestTrackingController.php Used by guest-tracking .php to manage guest orders.

HistoryController.php Used by history.php to get a customer’s orders.

IdentityController.php Used by identity.php for customer’s personal info.

IndexController.php Used by index.php to display the homepage.

ManufacturerController.php Used by manufacturer.php to get manufacturers.

MyAccountController.php Used by my-account.php to manage customer account.

NewProductsController.php Used by new-products.p hp to get new products.

OrderConfirmationController.php Used by order-confirmation.php for order confirmation.

OrderController.php Used by order.php to manage the five-step checkout.

OrderDetailController.php Used by order-detail.php to get a customer order.

OrderFollowController.php Used by order-follow.php to get a customer’s returns.

OrderOpcController.php Used by order-opc.php to manage one-page checkout.

OrderReturnController.php Used by order-return.php to get a merchandise return.

OrderSlipController.php Used by order-slip.php to get a customer’s credit slips.

PageNotFoundController.php Used by 404.php to manage the “Page not found” page.

ParentOrderController.php Manages shared order code.

PasswordController.php Used by password.php to reset a lost password.

PdfInvoiceController.php

PdfOrderReturnController.php

PdfOrderSlipController.php

PricesDropController.php Used by prices-drop.php to get discounted products.

ProductController.php Used by product.php to get a product.

SearchController.php Used by search.php to get search results.

SitemapController.php Used by sitemap.php to get the sitemap.

StatisticsController.php

StoresController.php Used by stores.php to get store information.

SupplierController.php Used by supplier.php to get suppliers.

Overriding a controller

Thanks to object inheritance, you can change a controller’s behaviors, or add new ones.

Keep overrides for your own shop

Overrides in PrestaShop are exclusive. This means that if your module overrides one of PrestaShop’s
behaviors, another module will not be able to use that behavior properly, or override it in an predictable
way.

Therefore, overrides should only be used for your own local modules, when you have a specific need
that cannot be applied with it.

It is not recommended to use an override in a module that you intend to distribute (for instance through
the PrestaShop Addons marketplace), and they are forbidden in partner modules.

How to

PrestaShop’s controllers are all stored in the folder, and use the “Core” suffix./controllers

For instance, when working with the Category controller:

File: /controllers/CategoryController.php
Class: CategoryControllerCore

In order to override a controller, you must first create a new class without the “Core” suffix, and place
its file in the folder./override/controllers

For instance, when overriding the Category controller:

File: /override/controllers/front/CategoryController.php
Class: CategoryController

	Controllers within PrestaShop

