Web service one-page documentation

Table of contents

® Web service one-page documentation
® Setting everything up
® Enabling cURL
® Enabling the webservice feature
Creating an access key
Accessing the webservice from the browser
Accessing the webservice use our PHP library
Handling errors
® Examples files
® Working with your data
® Viewing your data
® Creating and adding
® Deleting
® Available resources

Web service one-page documentation

This chapter aims at grouping all the information from the web service tutorial into a handy one-page
doc that you can print and keep at hand.

Setting everything up

In order for you to view, edit and delete the data on your PrestaShop store through its web service, you
first need to enable the web service feature, and then create an access key.

Enabling cURL
Configure your PHP installation so that it has the cURL extension installed and enabled:
With Windows, place this line in your php. i ni file:

extensi on=php_curl.dll

With Linux/Mac, install the cURL extension:

sudo apt-get install php5-curl

Enabling the webservice feature

Go in the PrestaShop back office, open the "Webservice" page under the "Advanced Parameters"
menu, and then choose "Yes" for the "Enable PrestaShop's webservice". Save your change: you're
done!

Creating an access key

Open the "Webservice" page under the "Advanced Parameters” menu, and then click the "Add New"
button to access the account configuration section. A long form appears:

® Key. The API key serves as the main identifier for the webservice account you are creating. Click the "Generate" button to get an unique
authentication key. You can also create your own (which must be 32 characters long), but using a generated key prevents wrong-doers from
guessing your key too easily.
Using this key, you and other selected users will be able to access the webservice.

http://doc.prestashop.com/display/PS16/Web+service+tutorial

® Key description. Helps you remember who you created that key for, what are the access rights assigned to it, etc. The description is not public,
but make sure to put all the keywords pertaining to the user, so that you can find their key more quickly.

® Status. You can disable any key at any time.

® Permissions. This section is very important, as it enables you to assign rights for each resource you want to make available to this key. Indeed,
you might want a user to have read and write access on some resources, but only read access on others — and no access to the more important
ones.
In the list of permissions, the checkbox most on the left enables you to define all the rights for a given resource. Likewise, the checkbox at the top
of each column enables you to give the select right (View, Modify, etc.) to all the resources.
Make sure to only select the rights needed for the usage of that key. Do not give all the rights for all resources to any key, keep that to yours and
yours only.

® Shop association. This only appears in multistore mode. It enables you to choose which of your stores the key owner should have access to.

If you choose to use a custom passkey instead of a generated one, make sure it is very secure and
that its rights are limited — and that it is 32characters long!

Accessing the webservice from the browser

The endpoint to your store's webservice is located in the / api / folder at the root of your installation of
Prestashop:

® |f PrestaShop is installed at the root of your server, you can access the API here: http://example.com/api/
® |f PrestaShop is installed in a subfolder of your server, you can access the API here: http://example.com/prestashop/api/

To access it, you need to provide your API key when request. There is no password, providing your
API key is enough — and therefore the key should be kept secret by the user!

You can either type the API endpoint address directly then enter your API key, or indicate your API key
in the address. Here is an example, with "UCCLLQIN2ARSHWCXLT74KUKSSK34BFKX" being the
APl key.

® At the root of the server: http://UCCLLQIN2ARSHWCXLT74KUKSSK34BFKX@example.com/api/
® |n a subfolder of the server: http://UCCLLQIN2ARSHWCXLT74KUKSSK34BFKX@example.com/prestasshop/api/

You can test this with any browser that supports XML.

If no permission has been set for the key, then the browser will keep asking you to enter the key
indefinitely.

If you cannot access some resources, the APl might answer with this XML response:

<?xm version="1.0" encodi ng="UTF-8"?>
<prestashop xm ns:xlink="http://www. w3. org/ 1999/ xI i nk" >
<errors>
<error>
<nessage><! [CDATA[Internal error. To see this error please display the PHP errors.]]></nmessage>
</error>
</ errors>
</ pr est ashop>

Using XLink, you will then be able to access your various resources. XLink associates an XML file to
another XML file via a link.

Accessing the webservice use our PHP library

You will need the latest version of the PSWebSer vi ceLi br ary. php file, which can be found on our
code repository: https://github.com/PrestaShop/PrestaShop-webservice-lib/blob/master
/PSWebServiceLibrary.php

To download the file:

® Click here to view the raw file: https://raw.github.com/PrestaShop/PrestaShop-webservice-lib/master/PSWebServiceLibrary.php
® Copy/paste the file into an empty text local file, using for instance Notepad.

http://example.com/api/
http://example.com/prestashop/api/
http://UCCLLQ9N2ARSHWCXLT74KUKSSK34BFKX@example.com/api/
http://UCCLLQ9N2ARSHWCXLT74KUKSSK34BFKX@example.com/prestasshop/api/
https://github.com/PrestaShop/PrestaShop-webservice-lib/blob/master/PSWebServiceLibrary.php
https://github.com/PrestaShop/PrestaShop-webservice-lib/blob/master/PSWebServiceLibrary.php
https://raw.github.com/PrestaShop/PrestaShop-webservice-lib/master/PSWebServiceLibrary.php

® Save the file as PSWebSer vi ceLi brary. php.

You can also directly download a zip archive of all the files in this repository, including the example
files, by clicking here: https://github.com/PrestaShop/PrestaShop-webservice-lib/archive/master.zip

Put PSWebSer vi celLi brary. php at the root of your web server, and add this line at the beginning of
any PHP file that needs to use your store's webservice.

Then, you must create an instance of the Pr est aShopWbser vi ce object, which takes 3 parameters
in its constructor:
® The store's root path (ex: http://example.com/).

® The authentication key (ex: UCCLLQIN2ARSHWCXLT74KUKSSK34BFKX).
® A boolean value, indicating whether the webservice must use its debug mode.

Here's how you create a webservice call:

$webServi ce = new Prest aShopWebservice(' http://exanple.com', 'UCCLLQON2ARSHWCXLT74KUKSSK34BFKX , fal se);

Handling errors

It is essential that you understand how to handle errors with the webservice library. By implementing
error-catch method early, you will more easily detect issues, and be able to correct them on the go.

Error handling with the webservice library is done using PHP exceptions. If you do not know about
them, you should read http://php.net/manual/en/language.exceptions.php, as exceptions are an
essential part of good coding practice.

How it works

The error handling is done withina t ry. . cat ch block, with the webservice processing being done in
the try section, the catch one containing the error handling code.

try {
/1 Execution (if an error occurs in this code, stops and goes in the catch bl ock)

}

catch {
/1 Error handling (tries to catch the error or the error display)

}

Example

That means each creation or use of the library must be located within a "try" block. The "catch" block
can then handle the error if it occurs during the execution of the try block.

Now we'll see how to list all customers via the webservice, and then we will see the four CRUD
methods.

In the following code sample, we want to get the list of all customers:
® |n the try block, we instantiate the Pr est aShopWebser vi ce object with the necessary parameters and retrieve the customer resource XML in a

variable.
® In the catch block, we put code to display the PHP error message, if anything wrong happens in the try block.

try {
/1 creating webservice access

$webServi ce = new PrestaShopWbservice(' http://exanple.con', 'UCCLLQON2ARSHWCXLT74KUKSSK34BFKX , fal se);

/1 call toretrieve all clients

https://github.com/PrestaShop/PrestaShop-webservice-lib/archive/master.zip
http://example.com/
http://php.net/manual/en/language.exceptions.php

$xm = $webServi ce->get (array(' resource' => 'custoners'));

}
catch (PrestaShopWebservi ceException $ex) {
/1 Shows a nessage related to the error
echo 'Other error:
 . $ex->get Message();

Examples files

All the example files can be found on our code repository: https://github.com/PrestaShop/PrestaShop-
webservice-lib/tree/master/examples

Working with your data

As shown above, you have to instantiate the Pr est aShopWebser vi ce object in order to use its
methods: add(),get(),edit() anddel ete().
You can also directly use call the REST API and get XML results, as this correspondence table shows:

CRUD operations = SQL statements | PrestaShopWebservice methods = HTTP methods

Create INSERT add() POST
Read SELECT get() GET
Update UPDATE edit() puT
Delete DELETE delete() DELETE

Viewing your data

Using the PrestaShopWebservice methods

Let's see how to view a full list of client IDs. As you can see from the table above, we need the get ()
method in order to retrieve a XML file containing all the customers. The parameter has to be a key-
value array, where we define the resource we want:

Key Value

resource customers

The value defines the resource that the webservice will use in a future call. The value could be carrier
types, countries or any other type of resource that can be found in the "Available resources" section of
this guide.

The code

In order to retrieve a list of customers in XML format, you only need to instantiate Pr est aShopWebser
Vi ce (a seen earlier) and use this code:

/1 The key-val ue array
$opt [' resource'] = 'custoners';

Retrieving the XML data
$xm = $webServi ce- >get ($opt);

The result

https://github.com/PrestaShop/PrestaShop-webservice-lib/tree/master/examples
https://github.com/PrestaShop/PrestaShop-webservice-lib/tree/master/examples

Launching the code above will return a XML object containing all the current customer IDs on the store:

<?xm >

<pr est ashop>
<custoner id="1" xlink:href="http://exanple.conlapi/custoners/1"/>
<custoner id="2" xlink:href="http://exanple.conlapi/custoners/2"/>
<custoner id="3" xlink:href="http://exanple.conlapi/custoners/3"/>
<custoner id="4" xlink:href="http://exanple.conlapi/custoners/4"/>

</ pr est ashop>

With this information, you can access the customer that interests you by using the value in the i d
attribute:

$opt['resource'] = 'custoners';

$opt['id] = 1;
$xm = $webServi ce- >get ($opt);

Structure

As you can see in the result in the previous section, the data returned by calling $webSer vi ce-
>get () puts you at the root of the XML document, in the context you requested.

To access the fields of clients who are children of the <cust oner s> tag, we only need to retrieve all
fields in an associative array in XML, like this:

$resources = $xml - >custoners->children();

From there, you can easily access client IDs. Here's an example with a path from identifiers:

foreach ($resources as $resource)
echo $resource->attributes() . '
';

Thanks to these elements, you can create a HTML table containing all the client IDs — or anything that
displays this information in your interface.

Using HTTP requests

If you would rather not use the Pr est aShopWebser vi ce object, note that PrestaShop's webservice
is RESTful, in that you can work with its data using the known HTTP verbs just as easily as you would
use the methods of the Pr est aShopWebser vi ce object.

Viewing your data follows the same rule, but with a HTTP GET request on the same URL:
To view your data you simply have to launch an HTTP GET request on the following URL:

htt p: // UCCLLQON2ARSHWCXLT74KUKSSK34BFKX@xanpl e. coni api / cust onmer s/

The resulting XML document is the same as the one obtained using Pr est aShopWebser vi ce's get ()
method.

Creating and adding

Creating and adding data takes a bit more work. Indeed, in order to create a new entry or edit an
existing one, you need to send a fully formed and complete XML document, whether you use Pr est aS
hopWebser vi ce or the HTTP methods.

When you need to create a new entry, the API can help you by providing a blank schema for any
resource, or even a synopsis with indications of the meaning for each tag:

/1 Returns a blank XML docunent, with all the tags ready to fil
http:// UCCLLQON2ARSHWCXL T74KUKSSK34BFKX@xanpl e. conml api / manuf act ur er s?schema=bl ank

/1 Returns a blank XML docunent, with all the tags ready to fill and indication of the expected value for each
http:// UCCLLQON2ARSHWCXL T74KUKSSK34BFKX@xanpl e. conl api / manuf act ur er s?schema=synopsi s

1, When a client is created from within PrestaShop's administration interface, a confirmation e-
mail is sent to the client. This cannot be done directly with the webservice: there is no way to
trigger the sending of that confirmation e-mail.

However, you can create an override file for the Cust onmer class and override the addW ()
method. This method is similar to Obj ect Mbdel : : add() but is only called from the
webservice. You can find examples of its use in the Pr oduct and Or der classes.

Deleting

The RESTful-ness of the API goes all the way: in order to delete the product with an ID of 12, you
simply have to launch an HTTP DELETE request on the following URL:

http:// UCCLLQON2ARSHWCXL T74KUKSSK34BFKX@xanpl e. coni api / product s/ 12/

Available resources
The / api / URL gives you the root of all the resources, in the form of an XML file.

Here it is, extremely simplified. This list is current as of version 1.5.4.1 of PrestaShop. Note that we
only show the API resources available for one of the available stores.

<?xm version="1.0" encodi ng="UTF-8"?>
<prestashop xm ns:xlink="http://ww.w3. org/ 1999/ xl i nk">
<api shop_nanme=" MYSHOP" >
<addresses>. .. </ addr esses>
<carriers> ..</carriers>
<cart_rules>. ..</cart_rul es>
<carts>...</carts>
<cat egories>...</categori es>
<conbi nati ons>. .. </ conbi nati ons>
<configurations>...</configurations>
<contacts>...</contacts>
<cont ent _managenent _systenp. .. </ cont ent _managenent _systenp
<countries>...</countries>
<currenci es>...</currenci es>
<cust oner _nessages>. .. </ cust omer _messages>
<cust oner _t hreads>. .. </custoner_t hreads>
<custoners>...</custoners>
<del i veries>...</deliveries>
<enpl oyees>. .. </ enpl oyees>
<groups>...</groups>
<guests>...</guests>

<i mage_types>...</inage_types>
<i mages>. .. </i nages>
<l anguages>. .. </ | anguages>
<manuf act urers>. .. </ nanuf act urer s>
<order _carriers>...</order_carriers>
<order _detail s> ..</order_detail s>
<order _di scounts>. .. </order_di scount s>
<order _histories>. ..</order_histories>
<order _i nvoi ces>. .. </order_i nvoi ces>
<order _paynent s>. .. </ order_paynent s>
<order_states>...</order_states>
<orders>...</orders>
<price_ranges>...</price_ranges>
<product _f eature_val ues>...</product_feature_val ues>
<product _features>...</product_features>
<product _option_val ues>. .. </ product _option_val ues>
<product _options>...</product_options>
<product _suppliers>...</product_suppliers>
<product s>. .. </ product s>
<search >...</search>
<shop_groups>... </ shop_groups>
<shops>. .. </ shops>
<specific_price_rules> ..</specific_price_rules>
<specific_prices>...</specific_prices>
<states>...</states>
<stock_avail abl es>. .. </stock_avai |l abl es>
<stock_novenent _reasons>. .. </ stock_novenent _reasons>
<st ock_novenent s>. .. </ st ock_nopvenent s>
<stocks>...</stocks>
<stores>...</stores>
<suppliers>...</suppliers>
<suppl y_order_detail s> ..</supply_order_detail s>
<suppl y_order_histories>...</supply_order_histories>
<suppl y_order_recei pt_histories>...</supply_order_receipt_histories>
<suppl y_order_states>...</supply_order_states>
<suppl y_orders>...</supply_orders>
<tags>...</tags>
<tax_rul e_groups>...</tax_rul e_groups>
<tax_rul es>. ..</tax_rul es>
<t axes>...</taxes>
<transl ated_configurations>. ..</transl ated_configurati ons>
<war ehouse_product _| ocati ons>. .. </war ehouse_product _| ocati ons>
<war ehouses>. .. </ war ehouses>
<wei ght _ranges>. .. </ wei ght _ranges>
<zones>...</zones>

</ api >

<api shop_nanme=" MYOTHERSHOP" >. . . </ api >

<api shop_nanme=" YETANOTHERSHOP" >. . . </ api >

</ prest ashop>

As with any XLink-bearing XML file, each resource element leads to more resources, linked from the x|
i nk attribute.

<custoners xlink:href="http://exanpl e.con api/custoners" get="true" put="true" post="true" del ete="true" head="
true">

<description xlink:href="http://exanple.conm api/custonmers" get="true" put="true" post="true" del ete="true"
head="true">The e-shop's custoners</description>

<schema x| ink: href="http://exanpl e.conf api / cust onmer s?schena=bl ank" type="bl ank"/>

<schenm x| ink: href="http://exanpl e. conf api / cust onmer s?schena=synopsi s" type="synopsi s"/>
</ cust oner s>

In addition, the element contains a description of the resource, and two schemas: a blank one, which
you can use to create a new item, and a synopsis one, which is just like the blank one but with a
detailed description of what type of data is expected in each element.

Here is an extract of the Customer blank schema:

Blank schema

<?xm version="1.0" encodi ng="UTF-8"?>
<prestashop xm ns: xlink="http://ww. w3. org/ 1999/ x| i nk" >
<cust omer >
<id></id>
<i d_defaul t _group></id_default_group>
<id_l ang></id_|l ang>
<news| etter_dat e_add></ newsl| ett er _dat e_add>
<ip_registration_newsletter></ip_registration_newsletter>
<l ast _passwd_gen></| ast _passwd_gen>
<secure_key></secure_key>
<del et ed></ del et ed>
<passwd></ passwd>
<l ast nane></| ast nane>
<firstname></firstnane>
<emai | ></ emai | >

</ cust oner >
</ pr est ashop>

Here is an extract of the Customer synopsis schema:

Synopsis schema

<?xm version="1.0" encodi ng="UTF-8"?>
<prestashop xm ns: xlink="http://ww. w3. org/ 1999/ xl i nk">
<cust omer >
<i d_defaul t_group></id_defaul t_group>
<id_|l ang format="isUnsi gnedl d"></id_| ang>
<newsl etter_date_add></ newsl etter_date_add>
<ip_registration_newsletter></ip_registration_newsletter>
<l ast _passwd_gen></| ast _passwd_gen>
<secure_key format="i sMI5"></secure_key>
<del eted format="i sBool "></del et ed>
<passwd required="true" maxSize="32" format="isPasswd"></passwd>
<l ast nane required="true" maxSi ze="32" format="i sName"></| ast nane>
<firstname required="true" maxSize="32" fornmat="isNanme"></firstname>
<emai | required="true" maxSize="128" format="isEnmail"></enuil >

</ cust oner >
</ pr est ashop>

The value types can be found in the webservice reference: http://doc.prestashop.com/display/PS15
/Web+service+reference.

http://doc.prestashop.com/display/PS15/Web+service+reference
http://doc.prestashop.com/display/PS15/Web+service+reference

	Web service one-page documentation

